
Ananthi P, Madan A Sendhil, Kanimozhi R, Maheswari R, Rathika C

 Rathinam Technical Campus, Coimbatore, India

Abstract

A decentralized database has the ability to be hosted anywhere, including the Internet, the intranets or extranets of a
company, or even on workstations that are dispersed around the company itself. There is also the potential that
information is stored on servers that are a part of a network that is well organized. This is another option available to
you. Because the information that distributed databases keep is dispersed across several computers, they have the
potential to increase productivity at remote work sites. This is because distributed databases store data in a manner
that is decentralized. This is because the data is stored in distributed databases in a decentralized form, which is the
reason for this result. As opposed to being the only reason, the justification for this is that data storage makes it
possible for transactions to be carried out on multiple workstations rather than just one. User data privacy has
become a major worry over the past few years as a direct result of the proliferation of distributed databases, which
are the technology that is currently considered to be the most cutting edge. This is a direct consequence of the
widespread implementation of distributed database systems. On a regular basis, comprehensive inspections as well
as routine maintenance must be performed on the system's access control and general integrity. This is an imperative
necessity. In the following paragraphs, we will discuss a number of solutions to the problem of data loss, all of
which are based on the characteristics of distributed database systems. Each of these solutions has its own
advantages and disadvantages. Multilayer access control, concurrent access, reliability, integrity, and recovery are
some of the qualities that fall under this category. The fundamental timestamp method, the distributed two phase
locking protocol (2PL), the distributed pessimistic protocol, and the Deadlock algorithm will be the primary foci of
this research into concurrency control-based algorithms.

Keywords: decentralised database, privacy legislation, multi-level access control, and concurrent access.

Introduction

Distributed database management systems, also known
as DDBMS, are a subset of database management
systems (DBMS) that are responsible for maintaining a
large number of databases that are housed in different
physical locations but are linked together through the
use of a computer network. [3] It offers features that
enable users to view a distributed database as a single
entity regardless of its location. This pattern has been
influenced by globalization, which has increased the
propensity of firms to expand their activities around the
globe. As a result, this pattern has become more
widespread. They might come to the conclusion that
instead of keeping a centralized database, they would be
better served by dispersing data among a number of

separate dedicated servers in order to better meet their
needs. As a direct consequence of this, the idea of using
distributed databases came to be developed throughout
time. In addition, every location is able to communicate
with the others when it becomes necessary to do so.
Through the utilization of a connection that is known as
a database link, users on the local machine can have
access to data that is kept on a database that is hosted on
a remote machine. Each database that is a component of
the distributed system needs to have a distinct global
database name within the network domain so that these
connections may be made. The objective of doing so is
to facilitate the establishment of these connections.
When working with a distributed system, it is possible
to identify a database server in a way that gives the
impression of being unique by making use of the name

 978-81-933187-0-6 © 2020 SEEEPEDIA.ORG1031
Society for Engineering EducaCon Enrichment

Data Preservation and
Concurrency Management in

Distributed Database

SEEE DIGIBOOK ON ENGINEERING & TECHNOLOGY, VOL. 01 (2), JUN 2020

ENGINEERING AND TECHNOLOGY

of the global database. A dispersed database
management system, more commonly referred to as a
DDBMS, is a sort of technology that enables users to
operate dispersed databases while concealing the
difficulties associated with the dispersal of data. This
type of technology is generally referred to as the
DDBMS. The fact that distributed databases are
typically physically separated from one another and are
administered independently between local and global
transactions is the primary distinction that can be made
between a centralized database and a distributed
database. This is the most important distinction that can
be made between the two different kinds of databases. If
an event does not retrieve any data from any sites other
than where it originated, then that event is regarded to
be local. On the other hand, a transaction is regarded as
global if it either attempts to analyze it from a location
different from the one where it was initially created or
simultaneously accesses data from a number of other
locations.

In this study, we investigate the security concern of
distributed databases, and we will also explore the
security difficulties that were observed in both models.
In addition, we will analyze the specific challenges
posed by each system's security measures towards the
end; the comparison will focus on the relative
advantages offered by each model with regard to safety.

Concept of an Artificial Intelligence Distributed
Database System

The idea of a database that was shared across multiple
locations did not originate until the middle of the 1970s.
Because it was expected that a large number of
applications will be disseminated in the not too distant
future, it became necessary to likewise distribute the
database. A distributed database system, also known as a
DDBS, is a collection of multiple databases that are
conceptually interconnected but physically spread
among numerous computers or locations via a computer
network. These databases make up a distributed
database system. Users of a distributed database have
the misconception that the entirety of the database is
locally accessible, with the possible exception of
communication delays that may occur between
locations. Users are oblivious to the fact that the
database is distributed due to the fact that a distributed
database is a logical union of all locations. A non-
distributed or centralized database system should be
avoided in favor of a distributed database system, often
known as a DDBS. There are many good reasons for
this. Work is frequently distributed across multiple
locations within an organization.

One of the most important aspects of the information
system is the planning and construction of a trustworthy
distributed database platform. The most significant
contributors to the total amount of time required to
process a query or update in a network with a high
bandwidth are the network's latency and the amount of
processing that occurs locally. Processing in parallel is
one way that can be utilized to lessen the impact of
these problems, particularly if this tactic is taken into
consideration from the very beginning of the design
phase. The strategic use of replication paves the way for
the implementation of parallelism in a way that is both
effective and practical. Therefore, the design of a
distributed database can be thought of as an
optimization issue that requires solutions to a variety of
interrelated challenges, such as the fragmentation of
data, the allocation of data, and the optimization of the
local environment. Controlling concurrency is an extra
problem that database systems could face at any given
time (CC). It enables users to access a distributed
database in a multiprogrammed manner while
maintaining the appearance that each user operates
independently on a dedicated system. This is
accomplished by maintaining the appearance of a
dedicated system for each user. Due to the fact that the
technology can be programmed in a variety of
languages, this is feasible. An additional element of
concurrency control (CC) is the coordination of
concurrent database visits inside a multi-user database
management system. This feature, which is sometimes
referred to as "concurrent access coordination" in some
contexts, can be found in multi-user database
management systems (DDBMS). There are several
different approaches to concurrency control that can be
taken. These algorithms are illustrated by the following
examples: two-phase locking, time stamping, multi-
version timestamps, and optimistic non-locking
methods. There are many various approaches to
concurrency control, and some of them are better than
others depending on the system.

Controlling concurrency is an extra problem that
database systems could face at any given time (CC). It
enables users to access a distributed database in a
multiprogrammed manner while maintaining the
appearance that each user operates independently on a
dedicated system. This is accomplished by maintaining
the appearance of a dedicated system for each user. Due
to the fact that the technology can be programmed in a
variety of languages, this is feasible. Concurrency
control, often known as CC, is used in multi-user
database management systems to help coordinate
concurrent database accesses. This is one of the roles
that CC plays. "concurrent access coordination" is what
"CC" stands for as an acronym (DDBMS). There are
several different approaches to concurrency control that
can be taken. These algorithms are illustrated by the

 978-81-933187-0-6 © 2020 SEEEPEDIA.ORG 1032
Society for Engineering EducaCon Enrichment

following examples: two-phase locking, time stamping,
multi-version timestamps, and optimistic non-locking
methods. Certain solutions for concurrency control are
preferable to others, although this is very dependent on
the system [5].

III. DESIGN STRATEGIES OF DISTRIBUTED
DATABASE

The idea of a database that was spread out across
multiple locations was not conceived of for the first
time until the late 1970s. It was imperative that the
database be sent out as well given that it was anticipated
that a considerable number of applications would be
sent out in the near future. A distributed database
system, also known as a DDBS, is a collection of
multiple databases that are conceptually interconnected
but physically spread among numerous computers or
locations via a computer network. These databases
make up a distributed database system. The term
"distributed database system" refers to the collection of
databases that make up this system. Users of a
distributed database have the misconception that the
database in its entirety is locally accessible, with the
possible exception of any communication delays that
may occur between locations. This is a common
misunderstanding among people. Because a distributed
database is a logical union of all sites, users are not
aware that the database is spread out across multiple
locations. As a direct consequence of this, it will be
possible to access the database in a more timely manner.
A non-distributed or centralized database system is
inferior to its comparable distributed database system
(DDBS), which is preferable for a variety of reasons. A
distributed database system (DDBS) is superior to its
non-distributed or centralized counterpart. Across an
organization, work is often decentralized and carried out
in a variety of locations.

One of the most significant challenges that the
information system must overcome is the development
of a trustworthy distributed database system. Within a

network that has a high bandwidth, the two variables
that have the most impact on the entirety of the
processing of a query or update are the network's
latency and the local processor. One technique that may
be utilized to lessen the impact of these aspects is
known as parallel processing, and this strategy is
especially effective when it is taken into consideration
throughout the entirety of the process of designing the
system. It is not possible to take advantage of
concurrency in a productive manner without first
employing replication in a planned and strategic
fashion. As a consequence of this, the planning of a
distributed database can be interpreted as an
optimization problem that requires solutions to a range
of problems that are reliant upon one another. A few of
these problems are the fragmentation of data, the
allocation of data, and the optimization of the local
environment. In relational database management
systems, concurrency control is an additional problem
that could potentially occur (CC). Users are given
access to a multi-programmed version of a distributed
database, but it is made to appear as though each user is
performing their tasks independently on a system that is
solely dedicated to them. This is because the computer
is capable of operating multiple programs all at once,
which explains why this is the case. An additional
function of concurrency management, known as
"concurrent access coordination," is the coordination of
concurrent accesses to a database that are regulated by
multi-user database systems. "concurrent access
coordination" is really the name of this function
(DDBMS). Concurrency control can be accomplished
using a great number of different strategies. Two-phase
locking, time stamping, multi-version timestamps, and
optimistic non-locking procedures are just a few
examples of the several methods that fall under this
category. When applied to certain types of systems,
specific concurrency control strategies perform
significantly better than others.

In relational database management systems,
concurrency control is an additional problem that could
potentially occur (CC). Users are given access to a
multi-programmed version of a distributed database, but
it is made to appear as though each user is performing
their tasks independently on a system that is solely
dedicated to them. This is because the system is capable
of simultaneously operating a large number of
programs, which is the reason behind this. The term
"concurrent access coordination," which is shortened to
"concurrency control" (CC), refers to the process of
coordinating numerous users' simultaneous database
accesses in a multi-user database management system.
Concurrency control serves a variety of applications
(DDBMS). Concurrency control can be accomplished
using a great number of different strategies. Two-phase
locking, time stamping, multi-version timestamps, and

 978-81-933187-0-6 © 2020 SEEEPEDIA.ORG 1033
Society for Engineering EducaCon Enrichment

optimistic non-locking procedures are just a few
examples of the several methods that fall under this
category. Although some methods offer superior
concurrency management to others [5,] the level of
control provided by a given system can vary
considerably.

IV. DATA SECURITY IN DISTRIBUTED
DATABASE

It was not until the 1970s when both the concept of a
distributed database as well as its implementation were
first conceived of by someone. Because it was
anticipated that a significant number of service
applications would be submitted in the not-too-distant
future, it was imperative that both the database and the
applications be disseminated. A distributed database
system, also known as a DDBS, is a collection of
multiple databases that are conceptually interconnected
but physically spread among numerous computers or
locations via a computer network. These databases
make up a distributed database system. The term
"distributed database system" refers to the collection of
databases that make up this system. A distributed
database system is what this collection of databases
ultimately amounts to from a purely technical
standpoint. Users of a distributed database have the
misconception that the database in its entirety is locally
accessible, with the possible exception of any
communication delays that may occur between
locations. This is a mistake that a lot of people make all
the time. Because a distributed database would be a
logical union of all locations, users are unaware of
something that may be referred to as the database's
distribution. As a direct consequence of this, it will be
possible to access the database in a more timely manner.
As a direct consequence of this change, it will be
possible to access the database in a more timely manner.
A non-distributed or centralized database system is not
as good as its equivalent, a distributed database system
(DDBS), which is desirable for a number of different
reasons. The performance of a distributed database is
known to be superior, which is one of these criteria. The
work that needs to get done is typically divided up and
distributed to a number of different areas within an
organization.
One of the most serious challenges that the information
system must overcome is the creation of a database
management system (dbms) that is able to be held
accountable. Latency and local computing are the two
characteristics that have the biggest impact on the
overall length of work necessary to execute a query or
an update on a network that has a high bandwidth. This

is because latency is the amount of time it takes for a
request to be processed after it is sent. Parallelism is one
strategy that may be implemented to lessen the impact
of these problems, and it is especially effective in this
capacity if parallel processing is taken into account from
the very beginning of the system design process. When
replication is used in a deliberate and organized manner,
only then is it feasible to make effective use of
parallelism. This is especially true for the processing of
enormous amounts of data. As a consequence of this,
the creation of a distributed database can be seen as an
optimization task that calls for the solution of a number
of different difficulties that are dependant on one
another. Data fragmentation, data allocation, and local
optimization are only some of the problems that arise as
a result of this. Another problem that could appear in
relational database systems is referred to by its
acronym, concurrency control (CC). Users are provided
with the capability to access a distributed database in a
multi-programmed manner, while at the same time the
illusion is preserved that each user is working
independently on a dedicated server. This is due to the
fact that the system is capable of executing many
programs at the same time, which makes it possible for
this to take place. One further use of concurrency
control, also known as concurrent access coordination,
is the process of coordinating the simultaneous accesses
that several users have to a database that is maintained
by a multi-user database system. This is one of the ways
in which concurrency control can be applied (DDBMS).
There is a great variety of different approaches one can
take in order to acquire the skill of being able to manage
concurrency. Approaches such as time stamping,
optimistic non-locking methods, multi-version headers,
and two-phase locking are all examples of the
procedures that fall under this group of processes. When
applied to certain systems, certain methods give more
concurrency control than do others. Compare and
contrast with other solutions.

The term "concurrency control" is an abbreviation for
yet another challenge that might be encountered by
relational database systems (CC). Users are provided
with the capability to access a distributed database in a
multi-programmed manner, while at the same time the
illusion is preserved that each user is working
independently on a dedicated server. This is due to the
fact that the system is capable of executing numerous
processes at the same time, which makes it possible for
this to happen. Concurrency control (CC), which is an
acronym for "concurrent access coordination," is a
component of a multi-user database management system
that is in charge of coordinating the ongoing database
accesses of several users (DDBMS). There is a great
variety of different approaches one can take in order to
acquire the skill of being able to manage concurrency.
The two phase locking, time sequencing, multi-version

 978-81-933187-0-6 © 2020 SEEEPEDIA.ORG 1034
Society for Engineering EducaCon Enrichment

timestamps, and optimistic non-locking approaches are
all examples of the algorithms that fall under this
category of algorithms. Even though the answer to this
question will change depending on the system, there are
certain concurrency control solutions that are superior to
others [5].

Aspects of client and server architecture pertaining to
data security:

There are five different approaches to consider when
talking about the safety of the customer model.

It's possible that the user workstation endorsement
mechanism is only partially functional or doesn't even
exist.

• The sign-in process has the potential to be made
more automated, which is already possible.

• The location of the workstation could be in a
potentially hazardous or public area, depending on
the circumstances.

• It is possible that the workstation is attempting to
circumvent the security protection by turning on
highly effective utility services or development
equipment.

• In severe situations, users have the ability to
assume the identity of another user in order to get
access to the system.

V. DISTRIBUTED CONCURRENCY CONTROL

Concurrency control is the management of multiple
users accessing the same database at the same time in a
Distributed Database System (DBMS). Strong two-
phase locking is the method that is used the most
frequently for controlling concurrency in distributed
systems. In database management systems and
transaction processing, the term "distributed
concurrency control" most often refers to the process of
controlling the concurrency of a distributed database.
The basic goal of distributed concurrency control is to
ensure that multi-database systems are capable of
distributed serializability. The process of managing
several users' simultaneous database access within a
multi-user management system is referred to as the
concurrency problem (DBMS). Concurrency control is
an additional challenge that comes along with database
systems. It gives users the ability to access a distributed
database in multiprogramming passion while keeping up
the appearance that each user is operating independently
on a dedicated system [10].

Serializability is achieved by the use of concurrency
control, which modifies the behavior of concurrently
running transactions so that they are unable to leave the
database in an inconsistent state. In a shared database
system, serializability is one method that can be used to
assure consistency. Serializability requires that a set of
concurrent transactions be carried out in a manner that
produces the same results as serial execution. This must
be accomplished in order to achieve serializability. [9]
The purpose of this section is to study the influence that
tiered security serializability has within a single-site
database system.

The Time Stamp Ordering Algorithm in Its Most
Primitive Form

A time stamp can be used to determine whether or not a
request is out of date in relation to the data object it is
working on, and it can also be used to rank occurrences
in relation to one another. One of the mechanisms that is
utilized in distributed databases to ensure that there is
continuity [16] is called timestamp ordering.

A timestamp is a unique identifier that can be used to
determine the details of a transaction. In this method,
the transactions are arranged according to the timestamp
values associated with each one. Despite the fact that
transactions might sometimes clash with one another,
the timestamp-ordering protocol ensures that they can
always be processed in the correct sequence. tasks
related to reading and writing

It is the responsibility of the protocol system to carry
out the conflicting pair of tasks depending on the
timestamp values of the tasks' respective timestamps.

Transaction T has a Request for Action (A) operation.

If WTS is greater than TS (T), then roll back T; else,
successfully execute R (A).

and then set RTS (A) to equal the maximum of RTS (A)
and TS (T).

T) The operation T issues the W (A) transaction.

If the RTS for A is higher than the TS for T, then
rollback T.

If WTS (A) is greater than TS (T), then rollback T;
otherwise, do nothing.

 978-81-933187-0-6 © 2020 SEEEPEDIA.ORG 1035
Society for Engineering EducaCon Enrichment

Carry out W (A) with success, and ensure that WTS (A)
= TS (T)

Locking that is Distributed in Two Phases (2PL)

There have been many different approaches to
concurrency control developed throughout the years in
order to guarantee the serializability of transactions that
are carried out in parallel. The locking procedure is
taken into consideration to be one of these methods.
There are a variety of approaches that can be taken to
lock something. One of the key strategies that is utilized
in order to manage concurrency in distributed database
systems is referred to as the two-phase locking protocol.
The maxim "Read any, write all" serves as the guiding
philosophy behind this protocol.

When things are read by a transaction, a read lock is
placed on those items. If the read lock later has to be
modified, the transaction changes the read lock into a
write lock. It is not necessary to lock the local copy of
an item to read it; all that is required is to place a read
lock on any duplicate of the item. However, in order to
update an item, all copies of the item must have the
"write locks" setting enabled. While the transaction is
being carried out, write locks are obtained, and the
transaction will not proceed with a write request until all
of the to-be-modified copies of the object have been
safely locked. This occurs at some point during the
process of the transaction. Every lock is kept in place
until either the transaction is finished in a successful
manner or it is abandoned and deleted. The 2PL
Protocol acts as a lock gatekeeper because it specifies
the criteria under which transactions can acquire and
release locks. This allows the 2PL Protocol to control
who can acquire and release locks. In order to comply
with the requirements of the 2PL protocol, each
transaction must, in two separate steps, either trigger a
lock or unlock request.

• A transaction may acquire locks while in the Growing
Phase, but it will not be able to release those locks.

• A transaction can unlock doors during the Shrinking
Phase, but it is unable to purchase new locks at this
time.

At first, the transaction will enter the Growing Phase,
which is the time period during which any necessary
locks will be requested. After this, it will enter the
Shrinking Phase, during which it will give up all locks

and stop being able to send requests. During this time, it
will also stop being able to read requests. Transactions
utilizing the 2PL Protocol must first get all necessary
locks before moving on to the unlock phase. The 2PL
protocol guarantees that serialization will take place, but
it does not check for or avoid deadlocks at any point
throughout the process. As a direct consequence of this,
this strategy may result in a deadlock. Each time a
transaction becomes stuck, local deadlocks are
investigated, and if necessary, they are broken by
resuming the transaction with the most recent initial
start-up time of any of the parties engaged in the
deadlock cycle. As a result, there is the possibility of
reaching an impasse. The "Snoop" process is in charge
of determining whether or not there is a global impasse.
It accomplishes this by routinely requesting waits-for
information from all sites, and then searching for and
resolving any potential global deadlocks that may have
arisen as a result of this information.

Optimistic Distributed Protocol Distributed (OPT)

The third algorithm is an optimistic distributed
concurrency control algorithm that is based on
timestamps and exchanges certification information
while the commit protocol is being carried out. The
timestamps of read and written operations are
maintained for each individual data item. Optimistic
concurrency control is capable of delivering
serializability even when working within the limits that
are imposed by our two fundamental assumptions. If
concurrency control is not put into place, concurrent
transactions have the potential to produce execution
orders that cannot be sequentialized [9].

Transactions are able to freely read and edit data
objects, with any changes being saved in a local
workspace up until the commit time. The transaction
needs to be able to remember the version identifier (also
known as the write timestamp) of the item at the precise
moment that it performs each read. After all of the
members of the transaction's cohorts have finished their
work and returned their findings to the master, the
transaction is given a timestamp that is completely
unique across the entire world. This time stamp is
provided to each cohort in the message that states it is
"ready to commit," and it is utilized to locally validate
all of the reads and writes performed by each cohort, as
will be detailed below:

In order for a read request to be considered valid, the
version of the item that is being requested to be read
must continue to be the most up-to-date version.

 978-81-933187-0-6 © 2020 SEEEPEDIA.ORG 1036
Society for Engineering EducaCon Enrichment

There are no writes with a later date that have been
authenticated in the immediate area. A write request is
considered to be valid if there have not been any
subsequent reads that have been validated and then
committed.

There have been no following readings that have been
validated in this area as of yet.

Algorithm for a Deadlock:

The distributed wound-wait locking algorithm is the one
that comes in at number four on the list of algorithms.
The 2 PL procedure serves as an example for this
method, which largely follows that procedure. This
technique takes a different approach to solving the
deadlock problem than 2PL does. Whereas 2PL stores
information about waits-for and then checks for local
and global deadlocks, this solution uses timestamps to
solve the problem and eliminate the possibility of
deadlocks occurring. The key to understanding the
difference lies in this distinction. Because each
transaction is given a one-of-a-kind number that
corresponds to the exact moment it was started, more
recent transactions are unable to force older transactions
to hold their place while they complete. If a younger
transaction attempts to acquire a lock while an older
transaction is already waiting for it, the younger
transaction will be "wounded," which means that it will
be restarted, unless the younger transaction has already
entered the second phase of its commit procedure. If the
request makes an older transaction wait for a younger
transaction, this result will occur. The ability for more
recent transactions to wait for older transactions reduces
the likelihood of there being a stalemate in the system.

t(T1) came before t(T2) because: If the transaction
[t(T1)] that is requesting for the lock is older than the
transaction [t(T2)] that currently has the lock on the data
item that is being requested, the transaction [t(T1)] that
is asking for the lock must either abort or rollback.

VI. CONCLUSIONS

centralized and decentralized administration systems for
databases Distributed database systems are becoming
increasingly important to the operations of businesses.
As a result, we are left with no other option but to take
measures to protect not only the authenticity of these
systems but also the atmosphere in which they function.
The protection of information in its confidentiality,

integrity, and accessibility are the primary goals of
security measures, regardless of the format the
information may take. When it comes to helping with
the management of the security of distributed databases,
there is a wide variety of tools and approaches available
to choose from. In this post, we are going to talk about
the fundamental idea that lies behind parallel and
distributed concurrency management, as well as the
various approaches that may be used to control
concurrency in distributed environments. In order for a
database to function in an efficient manner, it is
absolutely necessary for it to exhibit the ACID
properties.

Currently, we are conducting research on a variety of
methods for enhancing the speed of transactions that
require a high level of security without sacrificing the
safety of these transactions. In addition, we are
concentrating on the defense of real-time distributed
systems in an effort to discover methods that can
improve the effectiveness of transactions requiring a
high level of security without compromising that level
of security.

Reference

1. 1.Bernstein, P. A., & Goodman, N. (1984). An
algorithm for concurrency control and recovery in
replicated distributed databases. ACM Transactions
on Database Systems (TODS), 9(4), 596-615.

2. 2.Rothnie Jr, J. B., Bernstein, P. A., Fox, S.,
Goodman, N., Hammer, M., Landers, T. A., ... &
Wong, E. (1980). Introduction to a system for
distributed databases (SDD-1). ACM Transactions on
Database Systems (TODS), 5(1), 1-17.

3. 3 . B e r n s t e i n , P . A . , & G o o d m a n , N .
(1980). Fundamental Algorithms for Concurrency
Control in Distr ibuted Database Systems.
COMPUTER CORP OF AMERICA CAMBRIDGE
MA.

4. 4.Ray, C. (2009). Distributed database systems.
Pearson Education India.

5. 5.Corbett, James C., Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, Jeffrey John
Furman, Sanjay Ghemawat et al. "Spanner: Google!s
globally distributed database." ACM Transactions on
Computer Systems (TOCS) 31, no. 3 (2013): 1-22.

6. 6.Badal, D. Z. (1979, November). Correctness of
concurrency control and implications in distributed
databases. In COMPSAC 79. Proceedings. Computer
Software and The IEEE Computer Society's Third

 978-81-933187-0-6 © 2020 SEEEPEDIA.ORG 1037
Society for Engineering EducaCon Enrichment

International Applications Conference, 1979. (pp.
588-593). IEEE.

7. 7.Ramakrishnan, R., Gehrke, J., & Gehrke, J.
(2003). Database management systems (Vol. 3). New
York: McGraw-Hill.

8. 8.Rosenkrantz, D. J., Stearns, R. E., & Lewis, P. M.
(1978). System level concurrency control for
distributed database systems. ACM Transactions on
Database Systems (TODS), 3(2), 178-198.

9. 9.Garcia-Molina, H. (1983). Using semantic
knowledge for transaction processing in a distributed
database. ACM Transactions on Database Systems
(TODS), 8(2), 186-213.

10.10.Pokorný, J. (2015, June). Database technologies
in the world of big data. In Proceedings of the 16th
International Conference on Computer Systems and
Technologies (pp. 1-12).

 978-81-933187-0-6 © 2020 SEEEPEDIA.ORG 1038
Society for Engineering EducaCon Enrichment

	Data Preservation and Concurrency Management in Distributed Database

