
Dr. Madan A Sendhil, Dr. Ganeshkumar G

Department of Information Technology

Rathinam Technical Campus, Coimbatore, Tamilnadu, India

Abstract

In the near future, service-oriented architectures will predominate in the field of software engineering, according to
the consensus. Because of the possible benefits, software product makers are interested in migrating to cloud
environments. When an existing software system is transformed from the Software as a Product model to the
Software as a Service model, the software engineering process is modified. Although sufficient research has been
conducted on the process in general, very little effort has been devoted to comprehending how the influence would
be felt throughout the requirements elicitation phase. In this paper, we analyse the required changes that need to be
made to the requirements engineering process and provide a methodical approach for successfully implementing
such changes. In addition, it discusses the new benefits associated with the cloud-native elicitation of requirements.
The paper then examines the problems that were found and the solutions that were developed in connection to the
derived guidelines and best practises. When transitioning from a typical software product to a model based on
software as a service, we have concluded that the requirements engineering process can benefit from a methodical
change.

This topic is connected with the terms Software Engineering, Requirements Engineering, Software as a Service
(SaaS), Cloud Environment, and Reengineering

Introduction

Recent data indicates that just 20% of IT companies see
the use of software as a service (SaaS) as crucial or
extremely important. The vast majority of people who
operate in the field of information technology deem the
issue to be of moderate or lesser significance [21].
Nonetheless, this is the situation due to concerns
surrounding security (75 percent), performance and
availability (63 percent), and interface with existing
systems (61 percent), as described by these
organisations [21]. According to the conclusions of yet
another study, a client's decision to lease software rather
than purchase it can result in a 45 percent savings in
costs over a three-year period . Figure 1: The cloud computing model

 80 978-81-933187-0-6 © 2023 SEEEPEDIA.ORG
Society for Engineering Education Enrichment

Changes in Requirements
Engineering After

Migrating to the Software
as a Service Model

SEEE DIGIBOOK ON ENGINEERING & TECHNOLOGY, VOL. 03, JAN 2023

ENGINEERING AND TECHNOLOGY

SaaS is one of the components of internet-based cloud
computing, which contains SaaS as one of its
components. According to the National Institute of
Standards and Technology (NIST), a cloud computing
system is characterised by on-demand self-service,
broad network access, resource pooling (using multi-
tenancy), rapid adaptability, and measurable service. In
addition to SaaS, the NIST has identified two other
components necessary to complete the cloud
architecture. Platform as a Service is a marketing term
referring to the provision of runtime environments,
libraries, and several other services and software tools
by a particular provider (PaaS). The customer of a PaaS
has very no management control over the underlying
platform's components, but complete control over the
deployed apps . Infrastructure as a Service (IaaS) is the
final component of the cloud computing idea and is
positioned one step further away from the end user. The
customer is responsible for the installation and running
of all software, including operating systems, whereas
the IaaS provider is responsible for the storage, network,
and hardware components. In the SaaS model, both the
actual software system and user data are hosted and
stored in a central location. The customer rents a
software system, IT infrastructure, and auxiliary
services from the vendor rather than purchasing the
product, and the user is frequently charged on a pay-per-
use basis [10]. In a number of ways, however, a
software system designed using the Software as a
Service (SaaS) model is distinct from one developed
using the Software as a Product (SaaP) model. Its
architecture focuses mostly on databases, middleware,
PaaS, and service orientation . Therefore, the needs for
non-functional parts of typical software solutions will
vary . When converting a software product into a
software service, the software provider must account for
changes in the software's design and requirements [4, 7],
as well as throughout the software development
process . In this study, we collect the numerous software
requirements differences between the two models. In
order to attain this objective, we have reviewed the
relevant published research. In addition, we examined
the research that had been conducted on the existing
s o f t w a r e m i g r a t i o n p r o c e d u r e s a n d d r e w
recommendations on how to account for variances in
requirements while updating such processes. This
endeavour aims to give a broad method for software
developers who are interested in moving their software
product to a SaaS model but need assistance doing so.
Section 2 discusses the necessary background
information for understanding the SaaS model and the
associated changes in software requirements. Section 3
describes the tasks involved in the requirements
engineering process in a system utilising SaaS. In
Section 4, the necessary modifications to a requirements
engineering process are outlined, and a transformation
of this type is organised as a system. In Section 5, the

established technique is dissected and discussed
utilising derived best practises and concepts. Section 6
discusses the limitations of the proceeding, while
S e c t i o n 7 c o n t a i n s b o t h c o n c l u s i o n s a n d
recommendations for future study.

I. BACKGROUND

a. Software as a Service

Software has been created with a focus on the supply
side for an extended period of time . A software vendor
invests time and effort in the process of requirements
elicitation for a specific issue, develops and tests the
software, and then makes the final product available for
sale on the market. After acquiring a licence for the
software product, the customer or the software vendor's
support staff instals a copy of the software on the
customer's infrastructure. Small software updates are
often deployed and updated via an Internet interface and
are included in the initial purchase price. This traditional
paradigm is being challenged by the SaaS model, a new
trend in software engineering that is gaining popularity
in the 21st century [1]. The customer of SaaS-delivered
software purchases a usage right for a set period of time.
In exchange, the vendor gives access to the online
service, which is sometimes accompanied by a variable
individual access limit based on the pricing plan
selected by the user. Since its first appearances in
research in the early 2000s, software as a service (SaaS)
has gained steadily more attention from both a scientific
and a business perspective. The SaaS model represents a
substantial paradigm shift in the way software is created
and produced. Providing software as a service as
opposed to selling it as a product is a distribution
strategy that influences business concerns such as the
time required to bring a product to market, the extent of
client involvement, and release cycles . On the other
side, the change toward a service-oriented approach in
software development requires significant paradigm
modifications. The SaaS model decreases software
complexity by using services as the fundamental
organising principle . SOA, often known as service-
oriented architecture, is the fundamental notion
underlying software design. SOA is a sort of
architecture in which loosely connected but rigorously
segregated software components (usually different
business activities) communicate as composite services
via public interfaces. This enables the binding of
components in a scalable manner only when those
components are necessary. The SOA standard makes no
assumptions regarding the underlying platform and does
not define how services should be organised or secured .
These services are made available to consumers by
service providers, who are responsible for building and
implementing the service infrastructure and providing
the interface description for internet access (web-based).
To publish integration-ready services and to search for
such services, a common service directory is required

 81 978-81-933187-0-6 © 2023 SEEEPEDIA.ORG
Society for Engineering Education Enrichment

(see Figure 2). Services can be said to be composed of
other services in a recursive manner [3].

a. Changed Requirements

In contrast to the conventional SaaP model, the SaaS
model employs a unique infrastructure and offers a
variety of access and distribution choices (see Section
2.1). When transitioning a software product to a SaaS
model, it is customary to retain the majority of the
software's functionality [9]. As a result, the disparities
between the software engineering process and other
processes that influence software development,
including as operation, management, and architecture ,
are reduced to nonfunctional requirements [2]. The
disparities in non-functional needs previously described
can be largely related to the following three factors:

1. Subscription-based software must always be hosted in
the cloud, either by the software vendor or by a third
party that provides platform as a service solutions (see
Section 1). There are just a few of very large companies
that offer software services that mix the PaaS and SaaS
components under one roof. One such company is
Netflix, a streaming video on-demand provider. These
companies function as their own operations' platform
suppliers.

Typically, this type of software is distributed in the form
of a web application that utilises the Internet and its
associated protocols for data transmission.

A considerable portion of software given as a service to
clients is delivered as browser-supported applications
This indicates that the customer's device does not
require any specialised software in addition to the
previously installed web browser.

Due to the fact that the location of the server determines
various legal aspects, including those pertaining to data
protection laws and a company's compliance
regulations, factor 1 shifts the emphasis of the non-
functional requirements to security, data confidentiality,
privacy, and compliance. Moreover, a cloud service
provider is more likely to be the target of a security
breach than a decentralised structure or a corporation's
private network. Even while professional cloud service
providers are more difficult to successfully attack, there
are still safety issues that must be taken into account.
The majority of differences in non-functional needs are
directly attributable to Factor 2: multi-tenancy, user
concurrency, configurability, scalability, dependability,
performance, availability, compatibility, interoperability,
portability, efficiency, and promptness. Other
characteristics include continual evolution, increased
stakeholder interaction, and heightened usage
monitoring [7]. Factor 3 influences the unique aesthetic
and user interface design requirements, as well as the
limitations of browser-supported programmes.

RELATED WORK
Bennett and colleagues [3] discovered software
development trends that were influenced by the advent
of the Internet in 2000. They envision a future in which
software is adaptable, flexible, interactive, and
customised, and software engineering is demand-driven,
service-oriented, and centred on the elicitation of needs.
In their concluding part, the authors reach the
conclusion that future research should concentrate on
the necessary modifications to software engineering
techniques. Papazoglou released the seminal work done
on the core concepts underlying SOA. He described the
effects of SaaS on software engineering and business
operations as one of the first authors to do so.
Papazoglou concludes that the SOA necessitates
substantial modifications to programme design. Olsen,
the author of , has performed research regarding the
necessary paradigm shifts from a business perspective.
He discusses why a client connection based on a SaaS-
based software system differs significantly from one
based on a SaaP-based software system. Olsen is
responsible for the update mechanisms since they
require a long-term commitment from the vendor and
allow for enhancements to be made without disturbance.
In addition, the author emphasises the benefits that
regular upgrades and modular architecture provide to
consumers. In their research [1], Armbrust et al. present
definitions for a range of cloud computing properties.
They define the function of SaaS, present a list of
benefits as well as obstacles, and show how to avoid the
obstacles. Since the publication of these seminal works,
research has advanced significantly. In their research,
Kumar and Sangwan present typical software
engineering process models and key concepts. (e.g.
iterative development). They are continuing to compile
the qualities that distinguish the development of web-
based applications from those of conventional software.
The authors feel that continuity of the process is the
most crucial issue, which needs a methodical, iterative,
and reiterative approach. In addition to a list of the
attributes and characteristics of web-based applications,
they provide a highly generic adaption of a conventional
software engineering process model towards a model
that is suitable for the creation of web-based apps.
However, as a result of this, the authors do not provide a
specific procedure that may be used to create such apps.
Furthermore, Nogueira da Silva and Lucr'edio
conducted a complete literature review. They noticed
that interest in the topic had increased over the past
several years. According to them, the lack of
standardisation is the greatest obstacle cloud-based
software engineering confronts today. For instance,
selecting a PaaS provider may result in platform lock-
ins, which hinder clients from migrating to a different
service provider fast. In addition to providing
definitions of SaaS and SOA, the authors group SaaS

 978-81-933187-0-6 © 2022 SEEEPEDIA.ORG82
Society for Engineering Education Enrichment

developers into a variety of categories and explore the
challenges they confront. In terms of rebuilding
software for a new platform, they conclude that there is
a need for additional research into the formalisation of a
thorough reengineering process. Research on the
development of software as a service (SaaS) is analysed
and classified by Balian and Kumar [2]. In addition to
research on migration and reengineering, they include
works that examine the process of development from
the bottom up. In addition, the authors examine studies
on quality models for SaaS and conclude that adaption
of software engineering process models, quality models,
and metrics for SaaS is inadequate. They reach this
conclusion after discussing studies on SaaS quality
models. In comparing these two models, the most recent
and significant work in the field of comparing the
software engineering processes of the SaaP model and
the SaaS model have been made. Tariq et al. address the
impact of executing an application in a cloud
environment on its prerequisites. They describe any
technological requirements that are non-functional, any
legal concerns, and any other issues arising from data
management. The authors then categorise these topics
and identify the new cloud service provider among the
stakeholders. As a result, they propose extending the
Capability Maturity Model Integration (CMMI)
reference model with a checklist for the newly included
stakeholders. The research undertaken has provided in-
depth descriptions of the SaaP model and the
fundamentals underlying the SaaS paradigm. The
transition of a service-oriented system to cloud-based
software that is modelled after the SaaS paradigm has
also been the subject of current research. On the other
side, there is no process assistance for turning an
existing software product into a service-based
application. In addition, we were unable to identify any
migration solutions capable of addressing the
discrepancies in the requirements elicitation procedure.
This article aims to fill this void by providing a logical
and generic approach for migrating traditional software
products to the SaaS model in a sustainable and efficient
manner. The key focus of this method is the collection
of updated requirements.

REQUIREMENTS ENGINEERING PROCESS
FOR SAAS
a. Differences between Processes

This section will focus exclusively on the requirements
engineering procedure. However, certain variables
influence several phases of the software engineering
process, and others are, from the perspective of the
requirements, merely incidental considerations. The list
of differences between the traditional requirements
engineering process and the SaaS-based requirements
engineering process covers all components, despite the
fact that this was done to provide a full overview of the

differences. It is crucial for the software development
process in general to have a thorough understanding of
the requirements and their significance. In comparison
to the SaaP model, the SaaS model comprises a greater
number of stakeholders. According to Kumar and
Sangwan, these persons include, among others, analysts,
graphic designers, clients, marketing professionals, and
security experts. However, the requirements engineering
approach must also accommodate a greater diversity of
stakeholders. As described in Section 2.2, software as a
service (SaaS) often involves a higher degree of
customer involvement and the formation of long-term
links between the SaaS provider and the end user . The
user is incentivized to offer feedback either directly or
indirectly through usage tracking since an improvement
to a product can be predicted, and the user would
benefit from it without incurring additional expenditures
and in a predictable amount of time. As the software
resides centrally on the company's servers as opposed to
the customer's infrastructure, the integration of bug fixes
and new features is seamless and uninterrupted. They
are also incorporated without any delays because time to
market is drastically shortened due to the fact that new
versions are published early and regularly and are not
regarded as a separate software product. In addition,
there are no time delays in their integration. After their
implementation, the end user will be unable to
distinguish between updates and bug fixes. These less
disruptive upgrades, which respectively address fewer
problems but occur more frequently, necessitate a
reduced degree of retraining for the end user.
Additionally, the centrally hosted, multi-tenant software
as a service offers extra alternatives for testing newly
installed features. The level of acceptability can be
determined by exposing the feature to a subset of all
users and waiting for their input afterward. It is also
possible to offer two or three distinct variations of a
feature to a variety of user groups. This allows users to
compare features and choose the implementation with
the highest user acceptability.

a. A systematic transformation of the requirements
engineering process follows these steps:

In the first phase, a paradigm shift must be formed in
relation to the requirements' great variability. In the
context of software-as-a-service (SaaS), developers who
are accustomed to working with traditional software
products will need to adjust to the reality that needs
change. The proximity to agile development and the
advent of new elicitation techniques contribute to the
volatility of the requirements.

The second step involves incorporating requirements
engineering into an iterative and incremental software
engineering methodology. This style of software
engineering is not unique to service-based software
development; it is also used in conventional software

 83 978-81-933187-0-6 © 2023 SEEEPEDIA.ORG
Society for Engineering Education Enrichment

development. It is one of the distinguishing properties
between the two types of software. Due to the ever-
changing nature of the requirements and the frequent
release cycles, however, such iterations and continuous
software increments are necessary.

Step 3: Using rigorous methodologies, identify the
stakeholders and rank them according to their
significance.

Through integration, customers are integrated into the
requirements engineering process in the fourth phase.
To maximise the benefits of the switch to SaaS, feature
and bug report invitations are an imperative must. The
end users must have the sense that their engagement can
influence future feature additions and bug resolution
speed.

Implementation of user input collection tools is the fifth
phase (e.g. usage monitoring, feedback forms). This is
required to incentivize customers to offer feedback (see
Step 4), which entails establishing such a culture. This
can be achieved by placing feedback buttons on
particular features, offering feedback forms that are
accessible on the side of the screen, and utilising the
multiple usage monitoring capabilities that cloud
software offers.

The sixth phase is to provide methods for seamless
update integrations. As stated previously, one of the key
benefits of cloud-hosted software is that the designers of
the programme retain control over the distribution
process. Therefore, the integration of updates is highly
advantageous: The new software components need to be
installed once, and on a trustworthy server environment,
which is the company's cloud server rather than the
client's infrastructure. In addition, the high frequency of
small updates makes integration straightforward without
the need for downtime. This is owing to the fact that
there are proportionally less lines of code and database
design changes. Compared to lengthier maintenance
outages experienced by the entire system, small outages
experienced by individual system components are less
noticeable.

The seventh phase is to develop support for software
variants per user group for acceptance testing. The new
requirements engineering method enables the
production of many versions with uncertain acceptance
and the distribution of these variants to various user
groups. This was made possible by the procedure's
capacity to generate several variants. Acceptance testing
can then be conducted using the processes specified in
Step 5.

DISCUSSION AND BEST PRACTICES

This paper's major purpose was to present a strategy for
migrating from one type of software development
process to another, as well as to describe the differences

between the requirements engineering process of a
standard software product and the process of a software
service. If you adhere to the recommended
methodology, you will be less likely to overlook to
include crucial modifications in the requirements
engineering process. For those who are considering
relocating a software product but have not yet made a
choice. As a result, the methodology employed in this
study offers benefits not previously found in the
relevant body of research. In order to adapt the
transformation approach, we have created a list of best
practises for some of the following processes, which we
identified by studying the relevant literature. Agile
software development methodologies, such as Scrum,
are ideally suited for Step 2, as they give the best fit.
Step 3's examination of the stakeholders is conducted
effectively when socio-diagrams and power matrices are
utilised. The authors of [6] provide a comprehensive
summary of their methodology for identifying
stakeholders and conducting impact studies. In order to
encourage users to provide feedback, the measures
outlined in Step 5 have been successfully implemented
and can now be suggested. This includes integrating
application-wide feedback forms and providing usage
monitoring.

LIMITATIONS

This technique addresses the requirements engineering
process, which is a subset of the overall software
development process. Failure to migrate software
products to the cloud may still occur as a result of a
number of repercussions resulting from such a
migration. The approach's primary emphasis on web-
based service-oriented architectures is one of its
disadvantages. The experiences that led to this problem
were influenced by the findings of the literature review.
The vast majority of studies do not differentiate between
software as a service (SaaS) and web-based systems,
making i t extremely diff icult to develop a
transformation plan applicable to a variety of additional
consumer interface types.

CONCLUSION AND FUTURE WORK

The manner in which software engineering is currently
practised has experienced tremendous change. The
emergence of software as a service (SaaS) is one of the
reasons why software engineering techniques must be
modified. In many ways, the elicitation of requirements
for software delivered as a service differs significantly
from that of traditional products; some of these
differences are rather fundamental (see Section 2.2). On
the other hand, the differences have a multitude of
advantages, such as longer-term client connections, a
more targeted use of resources, and more frequent
feature updates. The requirements engineering process
must be transformed when transitioning from an

 84 978-81-933187-0-6 © 2023 SEEEPEDIA.ORG
Society for Engineering Education Enrichment

existing software product to a model based on software
as a service (SaaS). This work has offered a methodical
strategy for this transformation that may be used by
software engineers who wish to modify the manner in
which they establish and satisfy their software system's
needs. This approach can be utilised by software
developers because it has been presented in this article.
In the near future, research will be conducted to
determine how to combine the benefits of this novel
requirements elicitation method with those of agile
software engineering techniques, which already
emphasise iterative and incremental development.

REFERENCE

[1) Schäfer, J., & Lichter, H. (2016). Changes in
requirements engineering after migrating to the software
as a service model. Full-scale Software Engineering/
Current Trends in Release Engineering, 25.

2) santhoshkumar, s., & ramya, g. (2017). changes in
necessities trade after migrating to the saas model.

3) Chauhan, M. A., & Babar, M. A. (2011, July).
Migrating service-oriented system to cloud computing:
An experience report. In 2011 IEEE 4th International
Conference on Cloud Computing (pp. 404-411). IEEE.

4) Baliyan, N., & Kumar, S. (2014, August). Towards
software engineering paradigm for software as a service.
In 2014 Seventh International Conference on
Contemporary Computing (IC3) (pp. 329-333). IEEE.

5) King, T. M., & Ganti, A. S. (2010, April). Migrating
autonomic self-testing to the cloud. In 2010 Third
International Conference on Software Testing,
Verification, and Validation Workshops (pp. 438-443).
IEEE.

6) Melegati, J., Goldman, A., Kon, F., & Wang, X.
(2019). A model of requirements engineering in
software startups. Information and software technology,
109, 92-107.

7) Vyatkin, V. (2013). Software engineering in industrial
automation: State-of-the-art review. IEEE Transactions
on Industrial Informatics, 9(3), 1234-1249.

8) Rodriguez, J. M., Crasso, M., Mateos, C., Zunino, A.,
& Campo, M. (2011). Bottom-up and top-down cobol
system migration to web services. IEEE Internet
Computing, 17(2), 44-51.

9) Rodriguez, J. M., Crasso, M., Mateos, C., Zunino, A.,
& Campo, M. (2011). Bottom-up and top-down cobol
system migration to web services. IEEE Internet
Computing, 17(2), 44-51.

10) Mateos, C., Crasso, M., Rodriguez, J. M., Zunino,
A., & Campo, M. (2015). Measuring the impact of the
approach to migration in the quality of web service
interfaces. Enterprise Information Systems, 9(1), 58-85.

 85 978-81-933187-0-6 © 2023 SEEEPEDIA.ORG
Society for Engineering Education Enrichment

	Changes in Requirements Engineering After Migrating to the Software as a Service Model

